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1 Hartogs’ Theorem

1.1 Lemmas containing the argument

The goal is to prove the following theorem.

Theorem 1.1 (Hartogs). Let Q C C" be open, and let u : Q — C be separately holomor-
phic. Then u € Hol(§2).

We will break up the proof into a few lemmas.

Lemma 1.1. Let Q C C™ be open, and let u be separately holomorphic in Q. If u is locally
bounded in Q, then u € C(Q) (so u € Hol(Q2)).

Proof. Let D be a polydisc with D C Q. Write D = Dy x D', where D is a disc in C and
D' is a polydisc in C"~!. The function z; + u(z1,2’) € Hol(D;). By Cauchy’s integral
formula, 0, u(z1,2’) is bounded when z; € D] C D; (compactly contained) and 2z’ € D’.
It follows that 0,;u is bounded on a relatively compact polydisc C Dj; in other words, 9,;u
are locally bounded in Q. Also, d;;, = 0 for all j.

It follows that u is continuous. If a €  and h € C" = R?",

2n
u(a+ h) —u(a) = Zu(a +v;) —u(a 4+ vj_1), vj = (hj,...,h;,0,...,0).
j=1
Now use the mean value theorem. O

Induction on n: Now assume that Hartogs’ theorem is already known for functions of
< n complex variables.

Lemma 1.2. Let u : Q@ — C be separately holomorphic, and let D = H?Zl Dj be a closed
polydisc C Q with D° # &. Then there exist discs D;- C Dj forl <j<n—1with
nonempty interior such that if D!, = D,,, then u is bounded on D' = H;L:1 D:.



Proof. Let Eyy = {2/ € [[}Z I'Dj : u(?,2,)] < MYz, € Dp}. Epis closed: by the
inductive hypothesis, 2’ + u(2’, z,) is holomorphic in a neighborhood of H?:_ll D; for each
zn, and thus continuous; so

ne
Ey = ﬂ 2 e H Dj:|u(2,zn)| < M
zn€Dn j

is an intersection of closed sets. Also, Uy;—y Ev = [[}2; ! Dj: zp, — u(?, z,) is holomorphic
near D, for all 2’ € [T, ! and is thus bounded on D,: |u(2’, z,)| < M for z, € D,,.
H" 1DJ is a complete metric space, so by Baire’s theorem, so E)j; has nonempty

interior for some M. So Ej; contains a polydisc D’ = H?zll D; with nonempty interior
such that if D], = Dy, u is bounded in D" =[[7_, D} C D". O

Lemma 1.3. Let D be a polydisc {|z; —z;| < R:j =1,...,n}. Letw : D — C be
holomorphic in 2’ = (z1,...,2,-1) for every fized z,, and assume that u is holomorphic
and bounded in D' given by |z; — zjo\ <rforalll < j<n-—1 for somer > 0 and
|z, — 22| < R. Then u € Hol(D).

Proof. We may assume that z° = 0. Take 0 < Ry < R2 < R. Taylor expand 2’ — u(Z/, z,,):

u(2',zp) = Z o (2)(2)% |zjl <R,1<j<n—1,|z,] <R.
o’eNn—1
We have that ,
0% (0, z)
o 50) = oyt
is holomorphic in |2z,| < R. This series converges normally in |z;| < Rfor 1 < j <n—1. So

aar(zn)Rga 50 as |a/| = oo for each z,. Now we have that |u| < M in D’. By Cauchy’s
estimates in 2/, we know that

lao (zn)] < Vo

7"|0/|
Consider the sequence of subharmonic (in |z,| < R) functions
1 /
Par(2n) = mlog laas (2n)] | = a1+ ap_1.
Our bound gives us that ¢, is uniformly bounded above in |z,| < R. Since ay (zn)R‘Qall -0

as |o/| = oo,
lim Sup 9o (2n) < log(1/ Ry)

|a!| =00



for all z,,. By Hartogs’ lemma on subharmonic functions, if |z,| < R,, then for any € > 0,

por(z) < log(1/Ry) + ¢ < log(1/Ry)

for large |o/|. In other words, for large |o/| and |z,| < Ra,

o (20)| R < 1

The series Y-/ cnn—1 Gar(2n)(2')* converges absolutely for |z,| < Ry and |z;| < Ry (for all
1 < j <n-—1) and hence normally in D. So u € Hol(D) as a limit of holomorphic functions
(the partial sums). O

1.2 Proof of the theorem from the lemmas

We can now prove Hartogs’ theorem.

Proof. Let 20 € Q, and take a closed polydisc {|z; — z?\ < 2R,1 < j < n}. Apply the
second lemma to the closed polydisc with |z; —z?| <Rfor1<j<mn—1land |z,—2| <2R.
Then we get a polydisc of the form |z; — C]Q| <rforl1 <j<n-—1and |z, — 2% < R with
{lzj — CJQ| <r}C{lz — z]0-| < R,1 < j <n— 1} such that u is holomorphic and bounded
there. In particular, |z; — z?\. In particular, K“]Q — z?\ < R.

Consider the polydisc D given by |z; — CJQ\ <Rfor1<j<n-—1and|z, -2 <R
(closure in Q): in the polydisc, u is holomorphic in 2’ if 2, is fixed, and u is holomorphic
and bounded in the polydisc |z; — C]Q] <rforj=1,...,nand |z, — 20| < R. By the third
lemma, u is holomorphic in D, which is a neighborhood of z. O
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